

VOLTA VOLTA

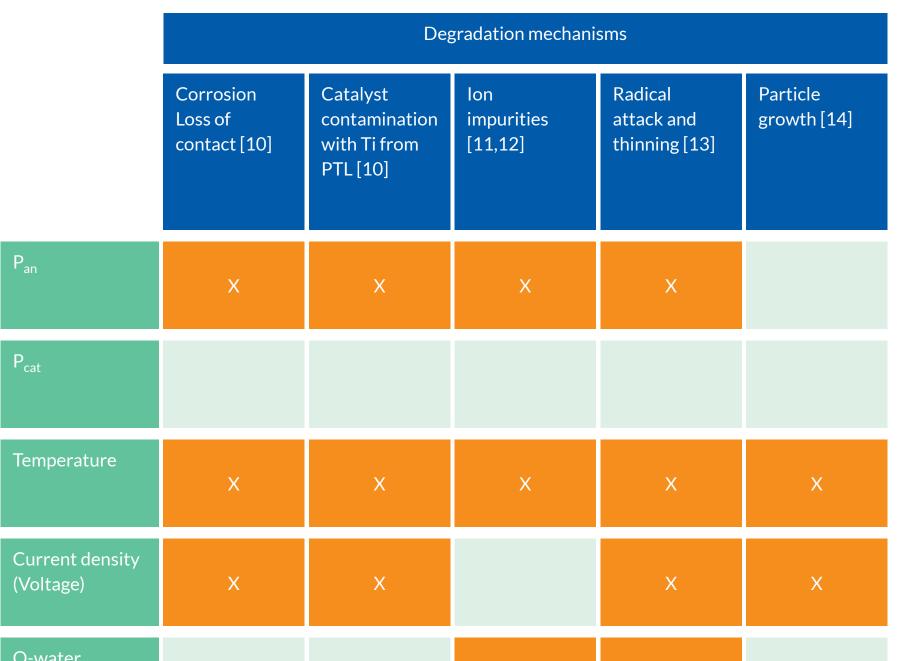
Shared Innovation Program VoltaChem: Electrification of the Chemical Industry

Impact of Dynamic Load from Renewable Energy Sources on PEM Electrolyzer Lifetime

Authors: Frans van Berkel¹, Arend de Groot¹, Sander ten Hoopen²

Corresponding author: vanberkel@ecn.nl

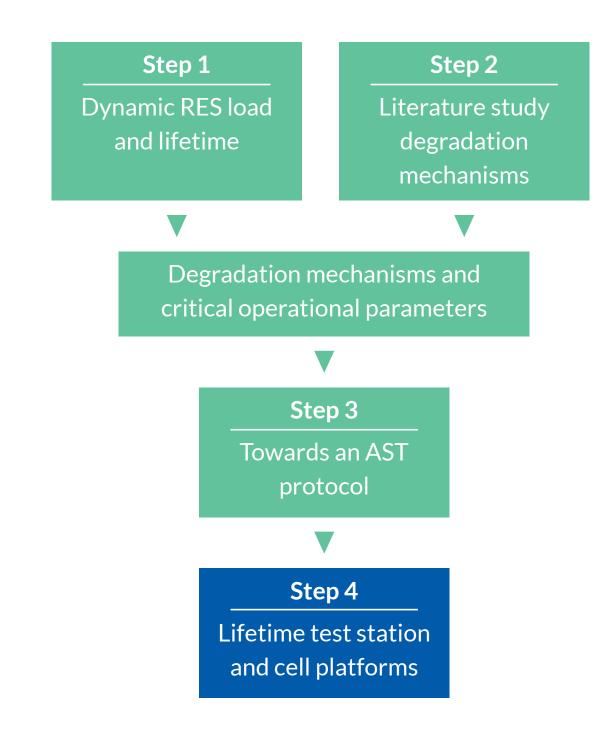
---- INTRODUCTION

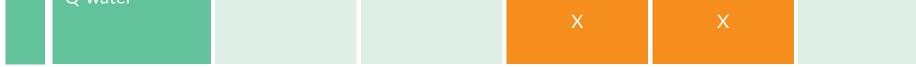

Proposal for an Accelerated Stress Test (AST) protocol for PEM-based electrolyzers on single cell level:

- Hydrogen production by electrolysis is important for matching renewable energy supply (RES) and energy demand;
- Electrolyzer cost, efficiency, and lifetime needs further progress: Cost and efficiency improvement impact lifetime;
- Electrolyzer lifetime determination is time-consuming and expensive and therefore limits testing of large number of cell materials;
- Accelerated Stress Testing (AST) is cost efficient way for prediction of component lifetime.

---- APPROACH TOWARDS AST

- STEP 2: DYNAMIC RES LOAD PATTERN AND LIFETIME


• Critical operating parameters: Temperature, anode oxygen pressure and variation in current density.



PROTOCOL PROPOSAL

STEP 1: DYNAMIC RES LOAD PATTERN AND LIFETIME

- PEM-based electrolyzers as demand response devices can respond sufficiently fast;
- Several main electrolyzer manufacturers show that

STEP 3: TOWARDS ACCELERATED STRESS TEST PROTOCOL

AST PROTOCOL		In-situ analysis		Ex-situ analysis
<u>Variation T:</u> $60, 70, 80, 90^{\circ}C$ $J = 1.5 A/cm^{2}$ $P_{an} = 2 bar$ $P_{cat} = 10 bar$ Test time = 800-1200 hours	100 80 60 20 0 200 400 600 800 1000 1200 Time in hours	<u>V(t) vs T:</u> 60, 70, 80, 90 [°] C	<u>EIS, J-V:</u> Ohmic losses Polarisation losses	
<u>Variation pO_2 (anode):</u> 2, 5, 8 bara T = 80°C P _{an} = 2 bar P _{cat} = 10 bar Test time = 800-1000 hours	9 7 6 5 4 1 0 200 400 600 800 1000 Time in hours	<u>V(t) vs pO₂(anode):</u> 2, 5, 8 bara	<u>Gas analysis:</u> Increase in gas cross over	<u>Post test analysis:</u> Electrolyte thickness Catalyst particle growth Contact resistances
$\frac{Variation J:}{J-high: 3 A/cm^{2}}$ J-cycle: 0-3 A/cm ² $T = 80^{\circ}C$ $P_{an} = 8 bara$ $P_{cat} = 10 bar$ Test time = 600 hours	3.5 2.5 2.5 1.5 1.5 0.5 0 0 100 200 300 400 500 600 Time in hours	<u>V(t) vs J:</u> J-high: 3 A/cm ² ; J-cycle: 0-3 A/cm ²	- <u>Water analysis:</u> Fluor release	

STEP 4: LIFETIME TEST STATION AND CELL PLATFORM

 Lifetime test station (ECN, Hydron Energy): Pcat < 100 bar; Pan < 10 bar; I < 300 A; Cell Area 25-100 cm²

--- CONCLUSION & OUTLOOK

- Development of cost and energy efficient
 PEM-based electrolyser cells and components
 requires Accelerated Stress Test Protocols
 (AST);
- AST-protocol proposed with potential to reduce test time 10-100x;
- Validation of proposed AST protocol by lifetime test station and Hydron Energy cell platform;
- Validated AST protocols will be lined up with EU harmonisation protocol and used for the quest to cost-efficient cell components.

- dynamic load operation has no significant additional contribution to degradation behaviour;
- Reducing cost and improving efficiency for PEMbased electrolyzer puts more demands on lifetime issues due to introduction of new materials and more challenging operating conditions;
- AST protocols are needed to address in a cost and time efficient manner lifetime issues of the new materials and more challenging operating conditions.
- Cell platform for validation AST (Hydron Energy): Cell area: 25 cm²; Pcat < 100 bar; J < 6 A/cm², thermal management

REFERENCES

[1] Energy Research Centre of The Netherlands ECN, Petten, The Netherlands

[2] Hydron Energy, Noordwijkerhout, The Netherlands

hydron energy

JOIN VOLTACHEM'S COMMUNITY: WWW.VOLTACHEM.COM/COMMUNITY

