

State of the art and future perspectives of electrochemical CO₂ conversion

Webinar: Thursday November 30th, 2023

Speakers

Yvette Veninga, Program and community manager VoltaChem yvette.veninga@voltachem.com

Remko Detz, senior scientist TNO remko.detz@tno.nl

Agenda for today

- Introduction (Yvette Veninga)
- **Presentation** (Remko Detz) ٠
- Q/A (chat) •

remko.detz@tno.nl

for Applied Scientific Research (TNO), P.O. Box 1, 1755 ZG Petten, The Netherlands Scientific Research (TNO), P.O. Box 6012, 2600 JA Delft, The Netherlands

Hatherley Lane, Cheltenham, GLOS, GL51 6SH, UK + Electronic supplementary information (ESI) available. See DOI:

option encompasses the reduction of greenhouse gas (GHG) 'IEA Greenhouse Gas R&D Programme, Pure Offices, Cheltenham Office Park, emissions of which fossil CO2 emissions account for roughly 70%.1 Various technologies to provide renewable energy, such as solar photovoltaics and wind turbines, are currently being

This journal is @ The Royal Society of Chemistry 2023

https://doi.org/10.1039/d3se00775h

Sustainable Energy Fuels

House rules

- Please mute your microphone in case unmuted
- Feel free to ask questions in the chat during the webinar
- Be informed that this webinar is being recorded and will be shared afterwards

VoltaChem at a glance

We accelerate development and scale-up of Power-2-X technology for a net zero and circular world

- Public-Private internationally oriented Shared Innovation Program of 12
 M/year initiated in 2014 by TNO, government and industry.
- **Executed by TNO** with >50 research scientists, technical consultants and system integrators, 4 research labs, 3 industrial fieldlabs, >50 customers.
- For customers and partners from the international chemical, equipment supply and EPC industries and renewable energy and materials sectors.
- Working collaboratively on assessment, development and integration of Power-2-X technologies and associated value chains for conversion of feedstocks to chemical building blocks for materials, fuels and food.
- With focus on **Power-2-Hydrogen** and **Power-2-Chemicals** processes, developing and integrating **electrochemical**, **plasma and integrated thermocatalytical** technologies.

VoltaChem Business community

accelerate development and scale-up of Power-2-X technologies

- Bring together stakeholders of new value chains, cross-fertilization of the energy, chemical & equipment sector and service providers in an exclusive forum.
- Dissemination of insights and knowledge gained from TNO's "Knowledge investment projects".
- Work together on specific high-level projects that are needed for implementation of the roadmap.

Interested? Send a mail to **yvette.veninga@tno.nl**

Why CO₂ conversion?

Carbon Embedded in Chemicals and Derived Materials

updated nova scenario for a global net-zero chemical industry in 2050

Only bio-based and recyled carbon will not be enough to cover C-demand Carbon as building block in a net zero world comes from:

- ✓ No fossil carbon
- ✓ Sustainable carbon sources:
 - ✓ Bio-based
 - ✓ Recycling
 - ✓ CO2 from green emissions or atmosphere

CO2 as carbon source will become important in the future

Source: Renewable Carbon Publications (renewable-carbon.eu)

State of the art and future perspectives of electrochemical CO₂ conversion

Remko Detz,

C.J. Ferchaud, A.J. Kalkman, C. Sánchez Martínez, M. Saric, M.V. Shinde, J. Kemper

Background of the study

 The IEA Greenhouse Gas R&D Programme (IEAGHG) requested TNO to provide an independent scientific advice regarding state-of-the-art, economics, life-cycle greenhouse gas performance and the associated trade-offs between several electrochemical CO₂ conversion technologies

CO₂ conversion approaches

Multiple approaches exist to convert CO₂ into products, such as chemicals and fuels. Our study focuses specifically on different electrochemical CO₂ conversion routes.

Selected electrochemical CO₂ conversion routes

- Several electrochemical CO₂ conversion processes are studied and reported in literature
- From these, we identified four routes that are developed at a technology readiness level (TRL) of more than 4 and next to these we as well included two routes (TRL < 4) to produce ethylene to our analysis

Table 1 Scope overview with electrochemical CO₂ conversion technologies and products. Green ticks (\checkmark) indicate routes that are relatively advanced (TRL > 4) and are within the scope of this study. Beaker symbols ($\frac{1}{10}$) indicate processes that are currently at a relatively early development stage (TRL < 4) and are outside the scope of this study, except for two processes to produce C₂H₄. LT = low temperature; HT = high temperature; SOEC = solid oxide electrolysis cell; MCEC = molten carbonate electrolysis cell; FA = formic acid; MeOH = methanol; OxA = oxalic acid; EtOH = ethanol; PrOH = *n*-propanol

Product typeGasTechnology lineCOLTV		Gaseous single carbon			Liquid single carbon			Gaseous and liquid multi-carbon			
		CO	CO/H ₂	CH ₄	FA	меОН	CH ₂ O	C₂H₄	OxA	EtOH	PrOH
		\sim									
HT	SOEC	\sim	\sim								
	MCEC		32 (111)								
Tandem HT/LT						×					

Six routes

 We assess six routes in which low temperature (LT) and high temperature (HT) electrochemical conversion processes convert CO₂ into several products: CO, syngas (CO/H₂), formic acid (CHOOH), and ethylene (C₂H₄)

System scope

• To assess all routes in a similar fashion, we fixed the system scope and determined the mass & energy balances for each of the routes

State-of-the-art

• The technologies differ in their technology development level and performance

Route	Technology	Voltage (V)	Current density (A/cm ²)	FE _{prod} (%)	Products (at cathode)	TRL
1	LT CO	3.0	0.20	98	<u>CQ</u> , H ₂	5-6
2	LT CHOOH	3.8	0.20	82	CHOOHHH2	4-5
3	LT GH ₄	3.7	0.12	64	<u>C₂H₄, CQ H₂</u>	3-4
4	HT CO	1.5	0.75	100	<u>CO</u>	8
5	HT CO/H	1.3	0.75	100	<u>CO/H</u> 2	5-6
6	Tandem C_2H_4	2.3	0.14	35	<u>C₂H₄, CQ H₂, EtOH</u>	3
	Chlor-alkali	2 - 4	0.10 - 0.65	>95	H ₂ , NaOH	9
	PEMEC	1.7	2-3	>99	H_2	8-9

• Chlor-alkali production is a comparable electrochemical conversion technology, which is already deployed at GW scale

Investment costs

- We assessed the key equipment costs for each of the routes for a single MW_e capacity plant.
- Installation costs are fixed at 80% of the total equipment costs. Owner's costs add another 10% to arrive at the total investment costs

Production costs

- We assessed the production costs for our six routes based on the state-of-the-art
- We made several assumptions, which clearly influence the uncertainty range and results of the analysis. Here we only present the base case scenarios to indicate the main dependencies

Parameter	Base value	Unit
Plant lifetime	20	Years
Operational hours	4000	h/yr
Discount rate	10	%
O&M costs factor	4	% of initial CAPEX
H ₂ O costs	1	€/tH ₂ O
CO ₂ costs	50	€/tCO ₂
Electricity costs	40	€/MWh _e

Production costs

• We assessed the production costs for our six routes based on the state-of-the-art

Projected costs

Shipments /avg. module price at year end:

2018:	109 GV	Vp / 0.24 US\$/Wp	₩ ITRPV			
2019:	130 GV	Vp / 0.23 US\$/Wp				
o/a ship	ment:	≈ 654 GWp				
o/a insta	allation:	≈ 628 GWp				
LR ≈ 23.5 % (1976 2019) LR ≈ 40.0 % (2006 2019)						
→ high	volume s	hipped w/ increased	product diversity			

 \rightarrow Significant change in module concepts

 \rightarrow Price learning continued

CAPEX projections

Learning curves CAPEX

ROUTE 4 – HT CO production

ROUTE 5 – HT CO/H₂ production

ROUTE 3 – LT C₂H₄ production

ROUTE 6 – Tandem C₂H₄ production

Cost projections

• Learning curves CAPEX – LT and HT electrochemical CO₂ conversion to CO

ROUTE 1 – LT CO production

ROUTE 4 – HT CO production

Cost projections

• Production costs projections (base case) – LT and HT electrochemical CO₂ conversion to CO

250 Levelized costs (€(2020)/GJ) Stack replacement costs 200 O&M costs 150 Investment costs Electricity costs 100 CO2 costs 50 H2O costs 0 base 2030 2040 2050 Fossil reference price: 7 - 18 €/GJ Required CO₂ taxation for 2050 breakeven: 60 €/tCO₂

ROUTE 4 - HT CO production

ROUTE 1 - LT CO production

Production costs projections 2050

• Projected base case production costs of the six CO₂ electrochemical conversion routes in 2050

Emission reductions

• The emissions related to electricity use of the routes are compared with emissions from fossil-based production

Emission reductions

- The LT routes to produce CO and FA are currently already avoiding emissions if driven by grid electricity in the EU (27), even with CO₂ from direct air capture
- Electrochemical ethylene production becomes only competitive with the fossil benchmark if very low-carbon electricity can be used (< 50 gCO_{2,e}/kWh)

Emission reductions

- Compared to the fossil benchmark, HT CO production is currently already avoiding emissions if driven by grid electricity in the EU (27), for HT syngas production the emission factor should be slightly lower (<200 gCO_{2,e}/kWh), for ethylene production very low-carbon electricity is required (< 50 gCO_{2,e}/kWh)
- Notably, not all value chain emissions have been analyzed and full life cycle assessment is required to provide a more detailed comparison

Conclusions

- Several electrochemical technologies are available to convert CO₂ into different products
- We analyzed six routes to produce CO, syngas, formic acid, and ethylene
- The economic performance of all routes is currently mainly determined by the CAPEX component
- Thanks to steep learning of the HT pathways, these routes are likely first to reach break-even levelized production cost in comparison to the fossil reference
- The most promising to reach break-even costs are LT formic acid production (CO₂ tax of 72 €/tCO₂) and HT CO production (CO₂ tax of 60 €/tCO₂)
- Once CAPEX has reduced thanks to learning, electricity and CO₂ prices strongly affect the production costs
- For ethylene production, saving GHG emissions by the electrochemical routes (3 and 6) becomes difficult if the efficiency and power density cannot be substantially improved without raising the investment costs
- All electrochemical production routes to produce CO, formic acid, and syngas avoid or can soon avoid CO₂ emissions when compared to fossil reference processes if only electricity use is considered
- Innovation and further development can substantially improve the process performance (efficiency, current density, purification) and, thus, competitivity

Still curious?

• More details can be found in the report and paper

Thank you for your attention

Questions?

Please ask these in the chat

Remko Detz remko.detz@tno.nl

Powered by TNO

ACCELERATING INDUSTRIAL ELECTRIFICATION

Join our community, visit www.voltachem.com